Please use this identifier to cite or link to this item: https://doi.org/10.1140/epjd/e2010-00019-6
Title: The role of metal cation in electron-induced dissociation of tryptophan
Authors: Feketeová, L.
Wong, M.W. 
O'Hair, R.A.J.
Issue Date: Oct-2010
Citation: Feketeová, L., Wong, M.W., O'Hair, R.A.J. (2010-10). The role of metal cation in electron-induced dissociation of tryptophan. European Physical Journal D 60 (1) : 11-20. ScholarBank@NUS Repository. https://doi.org/10.1140/epjd/e2010-00019-6
Abstract: The fragmentation of tryptophan (Trp) - metal complexes [Trp+M] +, where M = Cs, K, Na, Li and Ag, induced by 22 eV energy electrons was compared to [Trp+H]+. Additional insights were obtained through the study of collision-induced dissociation (CID) of [Trp+M]+ and through deuterium labelling. The electron-induced dissociation (EID) of [Trp+M]+ resulted in the formation of radical cations via the following pathways: (i) loss of M to form Trp+•, (ii) loss of an H atom to form [(Trp-H)+M]+•, and (iii) bond homolysis to form C2H4NO2M+•. Deuterium labelling suggests that H atom loss can occur from heteroatom and/or C-H positions. Other types of fragment ions observed include: C9H7NM +, C9H8N+, M+, C 2H3NO2M+, CO2M +, C10H11N2M+, C 10H9NOM+. Formation of C2H 4NO2M+• and C9H 7NM+ cations suggests that the metal interacts with both the backbone and aromatic side chain, thus implicating π-interactions for all M. CID of [Trp+M]+ resulted in: loss of metal cation (for M = Cs and K); successive loss of NH3 and CO as the dominant channel for M = Na, Li and Ag; formation of C2H3NO2M +. Preliminary DFT calculations were carried out on [Trp+Na] + and [(Trp-H)+Na]+• which reveal that: the most stable conformation involves chelation by the backbone together with a π -interaction with the indole side chain; loss of H atom from α -CH of the side chain is thermodynamically favoured over losses from other positions, with the resultant radical cation maintaining a (N, O, ring) chelated structure which is stabilized by conjugation. © 2010 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Source Title: European Physical Journal D
URI: http://scholarbank.nus.edu.sg/handle/10635/95262
ISSN: 14346060
DOI: 10.1140/epjd/e2010-00019-6
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.