Please use this identifier to cite or link to this item: https://doi.org/10.1021/ja9718376
Title: From aggregates to clusters. Facile formation of hetero-metal-metal bonds through reductive desulfurization by CO in a decapacitative transformation of a {Pt2MS2} Tbp frame to a {Pt2MS} tetrahedral core (M = Ag, Cu, and Ru)
Authors: Liu, H.
Tan, A.L. 
Mok, K.F. 
Mak, T.C.W.
Batsanov, A.S.
Howard, J.A.K.
Andy Hor, T.S. 
Issue Date: 1997
Citation: Liu, H., Tan, A.L., Mok, K.F., Mak, T.C.W., Batsanov, A.S., Howard, J.A.K., Andy Hor, T.S. (1997). From aggregates to clusters. Facile formation of hetero-metal-metal bonds through reductive desulfurization by CO in a decapacitative transformation of a {Pt2MS2} Tbp frame to a {Pt2MS} tetrahedral core (M = Ag, Cu, and Ru). Journal of the American Chemical Society 119 (45) : 11006-11011. ScholarBank@NUS Repository. https://doi.org/10.1021/ja9718376
Abstract: [Pt2(PPh3)4(μ-S2] (1) reacts with AgCl(PPH3) and CuCl under a mild pressure of CO (60 psi) to give [Pt2(CO)(PPh3)3(μ3-S)MCl] [M = Ag (4) and Cu (6)] via the intermediates [Pt2(PPh3))4(μ3-S)2Ag(PPh3)]Cl (2a), [Pt2(PPh3)5(μ3-S)2CuCl] (5), respectively. These transformations demonstrate an precedented concomitant process which involve heterometalation, carbonylation, reductive desulfurization, and metal-metal bond formation. The Ru-Pt aggregate of [Pt2(PPh3)4(μ3-S)2(RuCl(PPh3)2]Cl (7), prepared from 1 and RuCl2(PPh3)3, similarly converts to a [Pt2(CO2(PPh3)2(PPh3)2(μ3-S)RuCl(CO)(PPh3)]Cl (8) cluster under a CO atmosphere. Such transformation establishes a synthetic relationship between the {Pt2MS2} trigonal bipyramidal aggregates and {Pt2MS} tetrahedral clusters and provides a general entry to triangular heterometallic sulfide clusters of platinum. All complexes are characterized by IR, 31P{1H}, and 13C NMR spectroscopy and conductivity measurements. The structures of 4, 6, and the PF6 - derivative of 2a (viz. 2b) have also determined by single-crystal X-ray diffraction analyses. The structure of 2b shows a sulfide-bicapped Ag-Pt mixed-metal triangle without significant Pt···Pt [3.351(2) and 3.375(2) Å] or Ag···Pt [av 3.064(1) and 3.101(1) Å] interactions. Complex 2b crystallizes in two polymorphic modifications with different degrees of disposition of the Ag moieties with respect to the {Pt2S2} core. As a result, the Ag-S bonds [2.479(1) vs 2.585(1) Å and 2.502(2) vs 2.607(2) Å] are significantly different between the polymorphs in which the Ag···Pt distances are near-equivalent[3.061(1) Å] in one form but significantly different [2.9621(1) vs 3.240(1) Å] in the other. Complex 4 shows a triangular {AgPt2} cluster mono-capped by sulfide. Removal of a capping sulfur atom from 2a effectively reduces both Pt(II) centers and favors Pt-Pt bond formation [Pt-Pt 2.658(2) Å] and heterometallic Ag-Pt interactions [av Ag-Pt 2.965(1) Å in 4. Both the Pt-S and Ag-S bonds also strengthen significantly from 2b to 4. Cluster 6 is isostructural to 4 with similar homo-[Pt-Pt 2.657(1) Å] and heterometal [av Cu-Pt 2.832(1) Å interactions. Both 4 and 6 thus constitute a {MPt2S} distorted tetrahedral cluster frame. A facile and general aggregates-to clusters conversion through the elimination of COS gas is thus established.
Source Title: Journal of the American Chemical Society
URI: http://scholarbank.nus.edu.sg/handle/10635/93858
ISSN: 00027863
DOI: 10.1021/ja9718376
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

40
checked on Mar 27, 2020

WEB OF SCIENCETM
Citations

31
checked on Mar 27, 2020

Page view(s)

90
checked on Mar 29, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.