Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3191780
Title: Disilane chemisorption on Six Ge1-x (100) - (2×1): Molecular mechanisms and implications for film growth rates
Authors: Ng, R.Q.-M.
Tok, E.S. 
Kang, H.C. 
Issue Date: 2009
Citation: Ng, R.Q.-M., Tok, E.S., Kang, H.C. (2009). Disilane chemisorption on Six Ge1-x (100) - (2×1): Molecular mechanisms and implications for film growth rates. Journal of Chemical Physics 131 (4) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3191780
Abstract: At low temperatures, hydrogen desorption is known to be the rate-limiting process in silicon germanium film growth via chemical vapor deposition. Since surface germanium lowers the hydrogen desorption barrier, Six Ge (1-x) film growth rate increases with the surface germanium fraction. At high temperatures, however, the molecular mechanisms determining the epitaxial growth rate are not well established despite much experimental work. We investigate these mechanisms in the context of disilane adsorption because disilane is an important precursor used in film growth. In particular, we want to understand the molecular steps that lead, in the high temperature regime, to a decrease in growth rate as the surface germanium increases. In addition, there is a need to consider the issue of whether disilane adsorbs via silicon-silicon bond dissociation or via silicon-hydrogen bond dissociation. It is usually assumed that disilane adsorption occurs via silicon-silicon bond dissociation, but in recent work we provided theoretical evidence that silicon-hydrogen bond dissociation is more important. In order to address these issues, we calculate the chemisorption barriers for disilane on silicon germanium using first-principles density functional theory methods. We use the calculated barriers to estimate film growth rates that are then critically compared to the experimental data. This enables us to establish a connection between the dependence of the film growth rate on the surface germanium content and the kinetics of the initial adsorption step. We show that the generally accepted mechanism where disilane chemisorbs via silicon-silicon bond dissociation is not consistent with the data for film growth kinetics. Silicon-hydrogen bond dissociation paths have to be included in order to give good agreement with the experimental data for high temperature film growth rate. © 2009 American Institute of Physics.
Source Title: Journal of Chemical Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/93614
ISSN: 00219606
DOI: 10.1063/1.3191780
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.