Please use this identifier to cite or link to this item: https://doi.org/10.1149/1.1507785
Title: Electroless plating of copper via a Sn-free process on dielectric SiLK surface modified by UV-induced graft copolymerization with 4-vinylpyridine and 1-vinylimidazole
Authors: Yu, W.H.
Zhang, Y. 
Kang, E.T. 
Neoh, K.G. 
Wu, S.Y.
Chow, Y.F.
Issue Date: Oct-2002
Citation: Yu, W.H., Zhang, Y., Kang, E.T., Neoh, K.G., Wu, S.Y., Chow, Y.F. (2002-10). Electroless plating of copper via a Sn-free process on dielectric SiLK surface modified by UV-induced graft copolymerization with 4-vinylpyridine and 1-vinylimidazole. Journal of the Electrochemical Society 149 (10) : C521-C528. ScholarBank@NUS Repository. https://doi.org/10.1149/1.1507785
Abstract: Surface modification of Ar plasma-pretreated SiLK film coating on a (100)-oriented silicon wafer (SiLK-Si substrate) via UV-induced graft copolymerization with 4-vinylpyridine (the 4VP-g-SiLK-Si surface) or 1-vinylimidazole (the VIDz-g-SiLK-Si surface) was carried out to promote the adhesion with the electrolessly deposited copper. The surface composition of the graftcopolymerized SiLK-Si substrates was characterized by X-ray photoelectron spectroscopy. The topography of the 4VP-g-SiLK-Si and VIDz-g-SiLK-Si surfaces was investigated by atomic force microscopy. The 4VP-g-SiLK-Si and VIDz-g-SiLK-Si surfaces could be activated by PdCl2 in the absence of prior sensitization by SnCl2 (the Sn-free activation process) for the subsequent electroless deposition of copper. The 180°-peel adhesion strength of the electrolessly deposited copper on the 4VP-g-SiLK-Si and VIDz-g-SiLK-Si surfaces reaches about 6 and 5 N/cm, respectively. These adhesion strength values were much higher than those of the electrolessly deposited copper on the pristine and Ar plasma-treated SiLK-Si surfaces. The strong adhesion of the electrolessly deposited copper to the VIDz-g-SiLK-Si and 4VP-g-SiLK-Si surfaces was attributed to the synergistic effect of the strong interactior, between the pyridine or imidazole functional groups of the grafted polymers with copper atoms, the spatial distribution of the graft chains on the SiLK surface and into the metal matrix, and the fact that the graft chains were covalently tethered on the SiLK surface. © 2002 The Electrochemical Society. All rights reserved.
Source Title: Journal of the Electrochemical Society
URI: http://scholarbank.nus.edu.sg/handle/10635/91967
ISSN: 00134651
DOI: 10.1149/1.1507785
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

30
checked on Dec 7, 2019

WEB OF SCIENCETM
Citations

28
checked on Nov 28, 2019

Page view(s)

45
checked on Nov 30, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.