Please use this identifier to cite or link to this item: https://doi.org/10.1021/bm0493178
Title: Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization
Authors: Xu, F.J. 
Cai, Q.J.
Li, Y.L.
Kang, E.T. 
Neoh, K.G. 
Issue Date: Mar-2005
Citation: Xu, F.J., Cai, Q.J., Li, Y.L., Kang, E.T., Neoh, K.G. (2005-03). Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromolecules 6 (2) : 1012-1020. ScholarBank@NUS Repository. https://doi.org/10.1021/bm0493178
Abstract: A simple one-step procedure was employed for the covalent immobilization of an atom-transfer radical polymerization (ATRP) initiator, via the robust Si-C bond, on the hydrogen-terminated Si(111) surface (Si-H surface). Well-defined poly(glycidyl methacrylate) [P(GMA)] brushes, tethered directly on the (111)-oriented single-crystal silicon surface, were prepared via surface-initiated ATRP. Kinetics study on the surface-initiated ATRP of glycidyl methacrylate revealed that the chain growth from the silicon surface was consistent with a "controlled" process. A relatively high concentration of glucose oxidase (GOD; above 0.2 mg/cm2) could be coupled directly to the well-defined P(GMA) brushes via the ring-opening reaction of the epoxide groups with the amine moieties of the enzyme. The resultant GOD-functionalized P(GMA) brushes, with the accompanying hydroxyl groups from the ring-opening reaction of the epoxide groups, serves as an effective spacer to provide the GOD with a higher degree of conformational freedom and a more hydrophilic environment. An equivalent enzyme activity above 1.6 units/cm2 [μmoles Of β-D-(+)-glucose oxidized to D-gluconolactone per minute per square centimeter] and a corresponding relative activity of about 60% could be readily achieved. The immobilized GOD also exhibited an improved stability during storage over that of the free enzyme. The GOD-functionalized silicon substrates are potentially useful to the development of silicon-based glucose biosensors. © 2005 American Chemical Society.
Source Title: Biomacromolecules
URI: http://scholarbank.nus.edu.sg/handle/10635/88712
ISSN: 15257797
DOI: 10.1021/bm0493178
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

167
checked on Oct 7, 2019

WEB OF SCIENCETM
Citations

160
checked on Oct 7, 2019

Page view(s)

80
checked on Oct 12, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.