Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.jcat.2012.04.001
Title: | Computational and experimental study of the Volcano behavior of the oxygen reduction activity of PdM@PdPt/C (M = Pt, Ni, Co, Fe, and Cr) core-shell electrocatalysts | Authors: | Trinh, Q.T. Yang, J. Lee, J.Y. Saeys, M. |
Keywords: | Core-shell catalysts Density functional theory Electrocatalysis Oxygen reduction reaction Sabatier principle Volcano behavior |
Issue Date: | Jul-2012 | Citation: | Trinh, Q.T., Yang, J., Lee, J.Y., Saeys, M. (2012-07). Computational and experimental study of the Volcano behavior of the oxygen reduction activity of PdM@PdPt/C (M = Pt, Ni, Co, Fe, and Cr) core-shell electrocatalysts. Journal of Catalysis 291 : 26-35. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jcat.2012.04.001 | Abstract: | The activity of oxygen reduction electrocatalysts is governed by the Sabatier principle and follows a Volcano curve as a function of the oxygen-binding energy. Density functional theory calculations show that the oxygen-binding energy decreases in steps of about 10 kJ/mol in a series of core-shell Pd 3M@Pd 3Pt (M = Ni, Co, Fe, Mn, and Cr) electrocatalysts, leading to a gradual, Volcano-like variation in the oxygen reduction activity. A series of carbon-supported PdM@PdPt (M = Ni, Co, Fe, and Cr) nanoparticles with similar particle sizes were prepared by an exchange reaction between PdM nanoparticles and an aqueous solution of PtCl42-. The variation in the surface electronic structure of the core-shell structures was evaluated by Pt 4f 7/2 X-ray photo-electron spectroscopy and by CO-stripping voltammetry and agrees with the first principle calculations. At 0.85 V, the PdM@PdPt/C core-shell electrocatalysts show a 6-fold variation in activity, following the Volcano trend predicted by the calculations. The Pt mass activity of the Volcano-optimal PdFe@PdPt/C catalyst is an order of magnitude higher than the activity of commercial 3.0-nm Pt/C catalysts. The core-shell catalysts also display a high methanol tolerance, which is important for use in direct methanol fuel cells. Calculated Pt-M segregation energies suggest that the Pd 3M@Pd 3Pt core-shell structures are stable, in particular in the presence of 1/4 ML CO. Adsorption of oxygen-containing species may induce surface segregation of the 3d transition metal, except for the Volcano-optimal ORR catalyst, Pd 3Fe@Pd 3Pt. © 2011 Elsevier Ltd. All rights reserved. | Source Title: | Journal of Catalysis | URI: | http://scholarbank.nus.edu.sg/handle/10635/88679 | ISSN: | 00219517 | DOI: | 10.1016/j.jcat.2012.04.001 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.