Please use this identifier to cite or link to this item:
Title: A genome-scale metabolic model of Methanococcus maripaludis S2 for CO 2 capture and conversion to methane
Authors: Goyal, N.
Widiastuti, H.
Karimi, I.A. 
Zhou, Z.
Issue Date: 2014
Citation: Goyal, N., Widiastuti, H., Karimi, I.A., Zhou, Z. (2014). A genome-scale metabolic model of Methanococcus maripaludis S2 for CO 2 capture and conversion to methane. Molecular BioSystems 10 (5) : 1043-1054. ScholarBank@NUS Repository.
Abstract: Methane is a major energy source for heating and electricity. Its production by methanogenic bacteria is widely known in nature. M. maripaludis S2 is a fully sequenced hydrogenotrophic methanogen and an excellent laboratory strain with robust genetic tools. However, a quantitative systems biology model to complement these tools is absent in the literature. To understand and enhance its methanogenesis from CO2, this work presents the first constraint-based genome-scale metabolic model (iMM518). It comprises 570 reactions, 556 distinct metabolites, and 518 genes along with gene-protein-reaction (GPR) associations, and covers 30% of open reading frames (ORFs). The model was validated using biomass growth data and experimental phenotypic studies from the literature. Its comparison with the in silico models of Methanosarcina barkeri, Methanosarcina acetivorans, and Sulfolobus solfataricus P2 shows M. maripaludis S2 to be a better organism for producing methane. Using the model, genes essential for growth were identified, and the efficacies of alternative carbon, hydrogen and nitrogen sources were studied. The model can predict the effects of reengineering M. maripaludis S2 to guide or expedite experimental efforts. © 2014 the Partner Organisations.
Source Title: Molecular BioSystems
ISSN: 17422051
DOI: 10.1039/c3mb70421a
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jul 10, 2020


checked on Jul 10, 2020

Page view(s)

checked on Jun 28, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.