Please use this identifier to cite or link to this item:
Title: Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids
Authors: Sun, Z.
Lee, S.
Park, K.H.
Zhu, X.
Zhang, W.
Zheng, B.
Hu, P.
Zeng, Z.
Das, S.
Li, Y.
Chi, C. 
Li, R.-W.
Huang, K.-W.
Ding, J. 
Kim, D.
Wu, J. 
Issue Date: 4-Dec-2013
Citation: Sun, Z., Lee, S., Park, K.H., Zhu, X., Zhang, W., Zheng, B., Hu, P., Zeng, Z., Das, S., Li, Y., Chi, C., Li, R.-W., Huang, K.-W., Ding, J., Kim, D., Wu, J. (2013-12-04). Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids. Journal of the American Chemical Society 135 (48) : 18229-18236. ScholarBank@NUS Repository.
Abstract: Clar's aromatic sextet rule has been widely used for the prediction of the reactivity and stability of polycyclic aromatic hydrocarbons with a closed-shell electronic configuration. Recent advances in open-shell biradicaloids have shown that the number of aromatic sextet rings plays an important role in determination of their ground states. In order to test the validity of this rule in singlet biradicaloids, the two soluble and stable dibenzoheptazethrene isomers DBHZ1 and DBHZ2 were prepared by different synthetic approaches and isolated in crystalline form. These two molecules have different numbers of aromatic sextet rings in their respective biradical resonance forms and thus are expected to exhibit varied singlet biradical character. This assumption was verified by different experimental methods, including nuclear magnetic resonance (NMR), electron spin resonance (ESR), superconducting quantum interference device (SQUID), steady-state and transient absorption spectroscopy (TA), and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. DBHZ2, with more aromatic sextet rings in the biradical form, was demonstrated to possess greater biradical character than DBHZ1; as a result, DBHZ2 exhibited an intense one-photon absorption (OPA) in the near-infrared region (λabs max = 804 nm) and a large two-photon absorption (TPA) cross-section (σ(2) max = 2800 GM at 1600 nm). This investigation together with previous studies indicates that Clar's aromatic sextet rule can be further extended to the singlet biradicaloids to predict their ground states and singlet biradical characters. © 2013 American Chemical Society.
Source Title: Journal of the American Chemical Society
ISSN: 00027863
DOI: 10.1021/ja410279j
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.