Please use this identifier to cite or link to this item:
Title: Dielectric and piezoelectric properties of [0 0 1] and [0 1 1]-poled relaxor ferroelectric PZN-PT and PMN-PT single crystals
Authors: Rajan, K.K. 
Shanthi, M. 
Chang, W.S. 
Jin, J.
Lim, L.C. 
Keywords: Dielectric constant
Piezoelectric properties
Single crystal
Issue Date: 8-Jan-2007
Citation: Rajan, K.K., Shanthi, M., Chang, W.S., Jin, J., Lim, L.C. (2007-01-08). Dielectric and piezoelectric properties of [0 0 1] and [0 1 1]-poled relaxor ferroelectric PZN-PT and PMN-PT single crystals. Sensors and Actuators, A: Physical 133 (1) : 110-116. ScholarBank@NUS Repository.
Abstract: The properties of PZN-PT and PMN-PT single crystals of varying compositions and orientations have been investigated. Among the various compositions studied, [0 0 1]-optimally poled PZN-(6-7)%PT and PMN-30%PT exhibit superior dielectric and piezoelectric properties, with KT ≈ 6800-8000, d33 ≈ 2800 pC/N, d31 ≈ -(1200-1800) pC/N for PZN-(6-7)%PT; and KT = 7500-9000, d33 = 2200-2500 pC/N and d31 = -(1100-1400) pC/N for PMN-30%PT. These two compositions are also fairly resistant to over-poling. The [0 0 1]-poled electromechanical coupling factors (k33, k31 and kt) are relatively insensitive to crystal composition. [0 1 1]-optimally poled PZN-7%PT single crystal also exhibits extremely high d31 values of up to -4000 pC/N with k31 ≈ 0.90-0.96. While [0 1 1]-poled PZN-7%PT single crystal becomes over-poled with much degraded properties when poled at and above 0.6 kV/mm, PZN-6%PT crystal shows no signs of over-poling even when poled to 2.0 kV/mm. The presence of a certain amount (i.e., 10-15%) of orthorhombic phase in a rhombohedral matrix has been found to be responsible for the superior transverse piezoelectric properties of [0 1 1]-optimally poled PZN-(6-7)%PT. The present work shows that flux-grown PZN-PT crystals exhibit superior and consistent properties and improved over-poling resistance to flux-grown PMN-PT crystals and that, for or a given crystal composition, flux-grown PMN-PT crystals exhibit superior over-poling resistance to their melt-grown counterparts. © 2006 Elsevier B.V. All rights reserved.
Source Title: Sensors and Actuators, A: Physical
ISSN: 09244247
DOI: 10.1016/j.sna.2006.03.036
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.