Please use this identifier to cite or link to this item:
Title: Output feedback adaptive neural control for a class of non-affine non-linear systems with a dynamic gain observer
Authors: Du, H.
Ge, S.S. 
Issue Date: 17-Feb-2011
Citation: Du, H., Ge, S.S. (2011-02-17). Output feedback adaptive neural control for a class of non-affine non-linear systems with a dynamic gain observer. IET Control Theory and Applications 5 (3) : 486-497. ScholarBank@NUS Repository.
Abstract: Output feedback adaptive neural control is investigated for non-affine non-linear systems with zero dynamics using implicit function theorem, mean value theorem and neural network (NN) parametrisation by exploiting the explicit Lipschitz property of radial basis function NNs for function approximation. The control approach developed is based on non-separation principle design. A new dynamic gain observer is introduced to estimate the unmeasurable states of the system. The observer gain and the neural controller are simultaneously tuned according to output tracking error. With the universal approximation property of NN and the simultaneous parametrisation both for the NN approximation and the controller, restrictive conditions, such as Lipschitz assumption, strictly positive realness condition and contracting assumption are not required. Semi-globally uniformly ultimate boundedness for the steady-state and transient performance is guaranteed, and simulation results demonstrated the effectiveness of the proposed scheme. © 2011 The Institution of Engineering and Technology.
Source Title: IET Control Theory and Applications
ISSN: 17518644
DOI: 10.1049/iet-cta.2010.0183
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 20, 2021


checked on Oct 20, 2021

Page view(s)

checked on Oct 14, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.