Please use this identifier to cite or link to this item:
https://doi.org/10.1063/1.1390502
Title: | Electron field emission from polymer films treated by a pulsed ultraviolet laser | Authors: | Huang, S.M. Sun, Z. An, C.W. Lu, Y.F. Hong, M.H. |
Issue Date: | 1-Sep-2001 | Citation: | Huang, S.M., Sun, Z., An, C.W., Lu, Y.F., Hong, M.H. (2001-09-01). Electron field emission from polymer films treated by a pulsed ultraviolet laser. Journal of Applied Physics 90 (5) : 2601-2605. ScholarBank@NUS Repository. https://doi.org/10.1063/1.1390502 | Abstract: | The poly(phenylcarbyne) polymer films were coated on silicon substrates and then irradiated by a pulsed ultraviolet laser (λ = 248 nm) with various fluences (1-60 mJ/cm2) at an atmospheric pressure of nitrogen. The structures of the resulted films were investigated by Raman spectroscopy. The morphologies of the films were examined by scanning electron microscopy (SEM). The electron field emission properties of the films as cathodes were studied. Raman spectrum analysis and SEM results indicate that the polymer film is converted to nanoparticle carbon film with the laser fluence from 10 to 60 mJ/cm2. The conversion mechanism from the polymer to nanoparticle carbon and electron field emission mechanism from the converted carbon film is discussed. The converted carbon film showed better field emission properties, i.e., lower turn-on threshold emission field, higher emission current density, and higher emission light spot density with increasing laser fluence from 10 to 50 mJ/cm2. By increasing the laser fluence from 50 to 60 mJ/cm2, the emission property showed a slight degradation. A turn-on threshold emission field of 1.8 V/μm (at 1 nA/cm2) and emission current density of 30 mA/cm2 with an emission light spot density of 104/cm2 (at 14 V/μm) were observed for the polymer film irradiated with a fluence of 50 mJ/cm2. Circular and multiple-line field emission patterns are demonstrated using the laser irradiation of the poly(phenylcarbyne) polymer. © 2001 American Institute of Physics. | Source Title: | Journal of Applied Physics | URI: | http://scholarbank.nus.edu.sg/handle/10635/82261 | ISSN: | 00218979 | DOI: | 10.1063/1.1390502 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.