Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/77833
Title: | Conditional random field with high-order dependencies for sequence labeling and segmentation | Authors: | Cuong, N.V. Ye, N. Lee, W.S. Chieu, H.L. |
Keywords: | Conditional random field High-order feature Label sparsity Segmentation Semi-Markov conditional random field Sequence labeling |
Issue Date: | 2014 | Citation: | Cuong, N.V.,Ye, N.,Lee, W.S.,Chieu, H.L. (2014). Conditional random field with high-order dependencies for sequence labeling and segmentation. Journal of Machine Learning Research 15 : 981-1009. ScholarBank@NUS Repository. | Abstract: | Dependencies among neighboring labels in a sequence are important sources of information for sequence labeling and segmentation. However, only first-order dependencies, which are dependencies between adjacent labels or segments, are commonly exploited in practice because of the high computational complexity of typical inference algorithms when longer distance dependencies are taken into account. In this paper, we give efficient inference algorithms to handle high-order dependencies between labels or segments in conditional random fields, under the assumption that the number of distinct label patterns used in the features is small. This leads to efficient learning algorithms for these conditional random fields. We show experimentally that exploiting high-order dependencies can lead to substantial performance improvements for some problems, and we discuss conditions under which high-order features can be effective. © 2014 Nguyen Viet Cuong, Nan Ye, Wee Sun Lee and Hai Leong Chieu. | Source Title: | Journal of Machine Learning Research | URI: | http://scholarbank.nus.edu.sg/handle/10635/77833 | ISSN: | 15337928 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.