Please use this identifier to cite or link to this item: https://doi.org/10.1145/1873951.1874028
Title: Image tag refinement towards low-rank, content-tag prior and error sparsity
Authors: Zhu, G. 
Yan, S. 
Ma, Y.
Keywords: content consistency
error sparsity
low-rank
social images
tag correlation
tag refinement
Issue Date: 2010
Citation: Zhu, G.,Yan, S.,Ma, Y. (2010). Image tag refinement towards low-rank, content-tag prior and error sparsity. MM'10 - Proceedings of the ACM Multimedia 2010 International Conference : 461-470. ScholarBank@NUS Repository. https://doi.org/10.1145/1873951.1874028
Abstract: The vast user-provided image tags on the popular photo sharing websites may greatly facilitate image retrieval and management. However, these tags are often imprecise and/or incomplete, resulting in unsatisfactory performances in tag related applications. In this work, the tag refinement problem is formulated as a decomposition of the user-provided tag matrix D into a low-rank refined matrix A and a sparse error matrix E, namely D = A + E, targeting the optimality measured by four aspects: 1) low-rank: A is of low-rank owing to the semantic correlations among the tags; 2) content consistency: if two images are visually similar, their tag vectors (i.e., column vectors of A) should also be similar; 3) tag correlation: if two tags co-occur with high frequency in general images, their co-occurrence frequency (described by two row vectors of A) should also be high; and 4) error sparsity: the matrix E is sparse since the tag matrix D is sparse and also humans can provide reasonably accurate tags. All these components finally constitute a constrained yet convex optimization problem, and an efficient convergence provable iterative procedure is proposed for the optimization based on accelerated proximal gradient method. Extensive experiments on two benchmark Flickr datasets, with 25K and 270K images respectively, well demonstrate the effectiveness of the proposed tag refinement approach. © 2010 ACM.
Source Title: MM'10 - Proceedings of the ACM Multimedia 2010 International Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/70527
ISBN: 9781605589336
DOI: 10.1145/1873951.1874028
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.