Please use this identifier to cite or link to this item: https://doi.org/10.1088/0305-4470/32/24/314
Title: Two-parameter periodic solutions near a Hopf point in delay-differential equations
Authors: Inamdar, S.R. 
Karimi, I. 
Issue Date: 18-Jun-1999
Citation: Inamdar, S.R., Karimi, I. (1999-06-18). Two-parameter periodic solutions near a Hopf point in delay-differential equations. Journal of Physics A: Mathematical and General 32 (24) : 4509-4519. ScholarBank@NUS Repository. https://doi.org/10.1088/0305-4470/32/24/314
Abstract: Time delays can occur naturally or as transport lags in many physico-chemical as well as biological systems. Incorporating them into a lumped parameter system results in a system of first-order ordinary delay-differential equations (DDEs). In this paper, we develop two-parameter periodic solutions near a Hopf point in such systems using the general reductive perturbation theory and apply the results to a nonisothermal chemical reactor with delayed feedback. The paper suggests that the two-parameter result can be generalized to multiple time delays and other parameters. Results of this work can be useful in constructing plane wave solutions, rotating waves, phase singularity and other interesting phenomena for temporal kinetic systems with time delays.
Source Title: Journal of Physics A: Mathematical and General
URI: http://scholarbank.nus.edu.sg/handle/10635/66894
ISSN: 03054470
DOI: 10.1088/0305-4470/32/24/314
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.