Please use this identifier to cite or link to this item:
Title: Effect of particles on the recovery of Cryptosporidium oocysts from source water samples of various turbidities
Authors: Feng, Y.Y. 
Ong, S.L. 
Hu, J.Y. 
Song, L.F. 
Tan, X.L.
Ng, W.J. 
Issue Date: 1-Apr-2003
Citation: Feng, Y.Y., Ong, S.L., Hu, J.Y., Song, L.F., Tan, X.L., Ng, W.J. (2003-04-01). Effect of particles on the recovery of Cryptosporidium oocysts from source water samples of various turbidities. Applied and Environmental Microbiology 69 (4) : 1898-1903. ScholarBank@NUS Repository.
Abstract: Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% ± 5.2% [mean ± standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 gm, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.
Source Title: Applied and Environmental Microbiology
ISSN: 00992240
DOI: 10.1128/AEM.69.4.1898-1903.2003
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 18, 2019


checked on Jul 2, 2019

Page view(s)

checked on Aug 18, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.