Please use this identifier to cite or link to this item:
Title: Characterizing escherichia coli DH5α growth and metabolism in a complex medium using genome-scale flux analysis
Authors: Selvarasu, S.
Ow, D.S.-W.
Lee, S.Y.
Lee, M.M.
Oh, S.K.-W.
Karimi, I.A. 
Lee, D.-Y. 
Keywords: Acetate accumulation
Complex medium
Constraints-based flux analysis
Escherichia coli
Genome-scale in silico model
Systems biotechnology
Issue Date: 15-Feb-2009
Citation: Selvarasu, S., Ow, D.S.-W., Lee, S.Y., Lee, M.M., Oh, S.K.-W., Karimi, I.A., Lee, D.-Y. (2009-02-15). Characterizing escherichia coli DH5α growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnology and Bioengineering 102 (3) : 923-934. ScholarBank@NUS Repository.
Abstract: Genome-scale flux analysis of Escherichia coli DH5α growth in a complex medium was performed to investigate the relationship between the uptake of various nutrients and their metabolic outcomes. During the exponential growth phase, we observed a sequential consumption order of serine, aspartate and glutamate in the complex medium as well as the complete consumption of key carbohydrate nutrients, glucose and trehalose. Based on the consumption and production rates of the measured metabolites, constraints-based flux analysis of a genome-scale E. coli model was then conducted to elucidate their utilization in the metabolism. The in silico analysis revealed that the cell exploited biosynthetic precursors taken up directly from the complex medium, through growth-related anabolic pathways. This suggests that the cell could be functioning in an energetically more efficient manner by reducing the energy needed to produce amino acids. The in silico simulation also allowed us to explain the observed rapid consumption of serineI excessively consumed external serine from the complex medium was mainlyconverted into pyruvate and glycine, which in turn, led to the acetate accumulation. The present work demonstrates the application of an in silico modeling approach to characterizing microbial metabolism under complex medium condition. This work further illustrates the use of in silico genome-scale analysis for developing better strategies related to improving microbial growth and enhancing the productivity of desirable metabolites. © 2008 Wiley Periodicals, Inc.
Source Title: Biotechnology and Bioengineering
ISSN: 00063592
DOI: 10.1002/bit.22119
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 2, 2021


checked on Aug 2, 2021

Page view(s)

checked on Jul 16, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.