Please use this identifier to cite or link to this item: https://doi.org/10.1109/TWC.2012.113012.120500
Title: Wireless information transfer with opportunistic energy harvesting
Authors: Liu, L.
Zhang, R. 
Chua, K.-C. 
Keywords: Energy harvesting
ergodic capacity
fading channel
outage probability
power control
wireless power transfer
Issue Date: 2013
Citation: Liu, L., Zhang, R., Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications 12 (1) : 288-300. ScholarBank@NUS Repository. https://doi.org/10.1109/TWC.2012.113012.120500
Abstract: Energy harvesting is a promising solution to prolong the operation of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the narrowband flat-fading channel subject to time-varying co-channel interference. It is assumed that the receiver has no fixed power supplies and thus needs to replenish energy opportunistically via WEH from the unintended interference and/or the intended signal sent by the transmitter. We further assume a single-antenna receiver that can only decode information or harvest energy at any time due to the practical circuit limitation. Therefore, it is important to investigate when the receiver should switch between the two modes of information decoding (ID) and energy harvesting (EH), based on the instantaneous channel and interference condition. In this paper, we derive the optimal mode switching rule at the receiver to achieve various trade-offs between wireless information transfer and energy harvesting. Specifically, we determine the minimum transmission outage probability for delay-limited information transfer and the maximum ergodic capacity for no-delay-limited information transfer versus the maximum average energy harvested at the receiver, which are characterized by the boundary of so-called "outage-energy" region and "rate-energy" region, respectively. Moreover, for the case when the channel state information (CSI) is known at the transmitter, we investigate the joint optimization of transmit power control, information and energy transfer scheduling, and the receiver's mode switching. The effects of circuit energy consumption at the receiver on the achievable rate-energy trade-offs are also characterized. Our results provide useful guidelines for the efficient design of emerging wireless communication systems powered by opportunistic WEH. © 2013 IEEE.
Source Title: IEEE Transactions on Wireless Communications
URI: http://scholarbank.nus.edu.sg/handle/10635/57824
ISSN: 15361276
DOI: 10.1109/TWC.2012.113012.120500
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.