Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.jfranklin.2004.01.003
Title: | Force ripple suppression in iron-core permanent magnet linear motors using an adaptive dither | Authors: | Tan, K.K. Lee, T.H. Dou, H. Zhao, S. |
Keywords: | Adaptive control Adaptive dither Force ripples Linear motors Precision tracking control |
Issue Date: | Jul-2004 | Citation: | Tan, K.K., Lee, T.H., Dou, H., Zhao, S. (2004-07). Force ripple suppression in iron-core permanent magnet linear motors using an adaptive dither. Journal of the Franklin Institute 341 (4) : 375-390. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jfranklin.2004.01.003 | Abstract: | This paper presents the design and realization of an adaptive dither to reduce the force ripple in an iron-core permanent magnet linear motor (PMLM). A composite control structure is used, consisting of three components: a simple feedforward component, a PID feedback component and an adaptive feedforward compensator (AFC). The first two components are designed based on a dominant linear model of the motor. The AFC generates a dither signal with the motivation to eliminate or suppress the inherent force ripple, thus facilitating smooth precise motion while uncompromising on the maximum force achievable. An analysis is given in the paper to show the parameter convergence. Computer simulations and real-time experimental results verify the effectiveness of the proposed scheme for high precision motion trajectory tracking using the PMLM. © 2004 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. | Source Title: | Journal of the Franklin Institute | URI: | http://scholarbank.nus.edu.sg/handle/10635/56080 | ISSN: | 00160032 | DOI: | 10.1016/j.jfranklin.2004.01.003 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.