Please use this identifier to cite or link to this item:
https://doi.org/10.3390/s110908626
Title: | Artificial skin ridges enhance local tactile shape discrimination | Authors: | Salehi, S. Cabibihan, J.-J. Sam, S.G. |
Keywords: | Curvature discrimination Fingerprints Local shape Machine learning Prosthetic hand Ridged skin cover Robotic hand Support vector machines Tactile sensing |
Issue Date: | Sep-2011 | Citation: | Salehi, S., Cabibihan, J.-J., Sam, S.G. (2011-09). Artificial skin ridges enhance local tactile shape discrimination. Sensors 11 (9) : 8626-8642. ScholarBank@NUS Repository. https://doi.org/10.3390/s110908626 | Abstract: | One of the fundamental requirements for an artificial hand to successfully grasp and manipulate an object is to be able to distinguish different objects' shapes and, more specifically, the objects' surface curvatures. In this study, we investigate the possibility of enhancing the curvature detection of embedded tactile sensors by proposing a ridged fingertip structure, simulating human fingerprints. In addition, a curvature detection approach based on machine learning methods is proposed to provide the embedded sensors with the ability to discriminate the surface curvature of different objects. For this purpose, a set of experiments were carried out to collect tactile signals from a 2 × 2 tactile sensor array, then the signals were processed and used for learning algorithms. To achieve the best possible performance for our machine learning approach, three different learning algorithms of Naïve Bayes (NB), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) were implemented and compared for various parameters. Finally, the most accurate method was selected to evaluate the proposed skin structure in recognition of three different curvatures. The results showed an accuracy rate of 97.5% in surface curvature discrimination. © 2011 by the authors; licensee MDPI, Basel, Switzerland. | Source Title: | Sensors | URI: | http://scholarbank.nus.edu.sg/handle/10635/55149 | ISSN: | 14248220 | DOI: | 10.3390/s110908626 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.