Please use this identifier to cite or link to this item: https://doi.org/10.1145/1552291.1552292
Title: An online blog reading system by topic clustering and personalized ranking
Authors: Li, X.
Yan, J.
Fan, W.
Liu, N.
Yan, S. 
Chen, Z.
Keywords: Blog
Connected subgraph
Content information
Link information
Personalization
Ranking
Story
Topic
Issue Date: 1-Jul-2009
Citation: Li, X., Yan, J., Fan, W., Liu, N., Yan, S., Chen, Z. (2009-07-01). An online blog reading system by topic clustering and personalized ranking. ACM Transactions on Internet Technology 9 (3) : -. ScholarBank@NUS Repository. https://doi.org/10.1145/1552291.1552292
Abstract: There is an increasing number of people reading, writing, and commenting on blogs. According to a recent survey made by Technorati, there are about 75,000 new blogs and 1.2 million new posts everyday. However, it is difficult and time consuming for a blog reader to find the most interesting posts in the huge and dynamic blog world. In this article, an online Personalized Blog Reader (PBR) system is proposed, which facilitates blog readers in browsing the coolest and newest blog posts of their interests by automatically clustering the most relevant stories. PBR aims to make a user's potential favorite topics always ranked higher than those nonfavorite ones. This is accomplished in the following steps. First, the system collects and provides a unified incremental index of posts coming from different blogs. Then, an incremental clustering algorithm with a flexible half-bounded window of observation is proposed to satisfy the requirements of online processing. It learns people's personalized reading preferences to present a user with a final reading list. The experimental results show that the proposed incremental clustering algorithm is effective and efficient, and the personalization of the PBR performs well.
Source Title: ACM Transactions on Internet Technology
URI: http://scholarbank.nus.edu.sg/handle/10635/55047
ISSN: 15335399
DOI: 10.1145/1552291.1552292
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.