Please use this identifier to cite or link to this item:
Title: A class decomposition approach for GA-based classifiers
Authors: Guan, S.-U. 
Zhu, F.
Keywords: Class decomposition
Genetic algorithm
Issue Date: Apr-2005
Citation: Guan, S.-U., Zhu, F. (2005-04). A class decomposition approach for GA-based classifiers. Engineering Applications of Artificial Intelligence 18 (3) : 271-278. ScholarBank@NUS Repository.
Abstract: Genetic algorithm (GA) has been used as a conventional method for classifiers to evolve solutions adaptively for classification problems. In this paper, a new approach using class decomposition is proposed to improve the performance of GA-based classifiers. A classification problem is fully partitioned into several class modules in the output domain and each module is responsible for solving a fraction of the original problem. These modules are trained in parallel and independently and the results obtained are integrated and evolved further for a final solution. A scheme based on Fisher's linear discriminant (FLD) computation is used to estimate the difficulty of separating two classes. Based on the FLD information derived, different integration approaches are proposed and their performance is compared. The experiment results on a benchmark data set show that class decomposition can achieve higher classification rate than the normal GA and FLD-based integration improves the classification accuracy further. © 2004 Elsevier Ltd. All rights reserved.
Source Title: Engineering Applications of Artificial Intelligence
ISSN: 09521976
DOI: 10.1016/j.engappai.2004.09.010
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 16, 2021


checked on Jun 7, 2021

Page view(s)

checked on Jun 11, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.