Please use this identifier to cite or link to this item:
https://doi.org/10.1002/qre.1151
Title: | A Bayesian optimal design for accelerated degradation tests | Authors: | Liu, X. Tang, L.-C. |
Keywords: | Accelerated degradation test Bayesian optimal design Gibbs sampler Hot-carrier-induced degradation Monte Carlo simulation Physically based statistical model |
Issue Date: | Dec-2010 | Citation: | Liu, X., Tang, L.-C. (2010-12). A Bayesian optimal design for accelerated degradation tests. Quality and Reliability Engineering International 26 (8) : 863-875. ScholarBank@NUS Repository. https://doi.org/10.1002/qre.1151 | Abstract: | This paper proposes a Bayesian design approach to planning a pre-production accelerated design test (ADT) with physically based statistical models. To motivate the study, we consider the hot-carrier-induced degradation of modern MOS field effect transistors. A single-path power-law statistical degradation model with nonlinear stress-life relationships is first developed. Based on this model, we formulate a Bayesian optimal design problem that minimizes the expected pre-posterior variance of the quantity of interest at use environment. To solve the problem, a simulation-based stochastic optimization method, which yields a consistent estimate of the optimal design, is utilized. As demonstrated by the numerical example, such an algorithm is of great practical importance in planning an ADT because it is considerably faster than the commonly used Monte Carlo simulation for evaluating the expected pre-posterior variance. Finally, we perform a comparison study between the proposed Bayesian plan and the locally optimal plan, which is based on the maximum likelihood theory. Results strongly suggest that the robustness of the proposed plan against the uncertainty associated with planning inputs can be significantly enhanced. © 2010 John Wiley & Sons, Ltd. | Source Title: | Quality and Reliability Engineering International | URI: | http://scholarbank.nus.edu.sg/handle/10635/53895 | ISSN: | 07488017 | DOI: | 10.1002/qre.1151 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.