Please use this identifier to cite or link to this item:
Title: Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays
Authors: Li, Z.R.
Liu, G.R. 
Hadjiconstantinou, N.G.
Han, J.
Wang, J.-S. 
Chen, Y.Z. 
Keywords: Dispersion
DNA separation
Macrotransport model
Ogston sieving
Issue Date: Feb-2011
Citation: Li, Z.R., Liu, G.R., Hadjiconstantinou, N.G., Han, J., Wang, J.-S., Chen, Y.Z. (2011-02). Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays. Electrophoresis 32 (5) : 506-517. ScholarBank@NUS Repository.
Abstract: We present a theoretical model for describing the electric field-driven migration and dispersion of short anisotropic molecules in nanofluidic filter arrays. The model uses macrotransport theory to derive exact integral-form expressions for the effective mobility and diffusivity of Brownian particles moving in an effective one-dimensional energy landscape. The latter is obtained by modeling the anisotropic molecules as point-sized Brownian particles with their orientational degrees of freedom accounted for by an entropy penalty term, and using a systematic projection procedure for reducing the system dimensionality to the device axial dimension. Our analytical results provide guidance for the design and optimization of nanofluidic separation systems without the need for complex numerical simulations. Comparison with numerical solution of the macrotransport equations in the actual, effectively two-dimensional, geometry shows that the one-dimensional model faithfully describes the field- and size-dependences of mobility and diffusivity, with maximum difference on the order of 10% under the experimentally relevant electric fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Electrophoresis
ISSN: 01730835
DOI: 10.1002/elps.201000259
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 12, 2021


checked on Jun 12, 2021

Page view(s)

checked on Jun 11, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.