Please use this identifier to cite or link to this item:
Title: Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules
Authors: Li, Z.R.
Liu, G.R. 
Chen, Y.Z. 
Wang, J.-S. 
Bow, H.
Cheng, Y.
Han, J.
Keywords: DNA electrophoresis
Electroosmotic flow
Ogston sieving
Issue Date: Jan-2008
Citation: Li, Z.R., Liu, G.R., Chen, Y.Z., Wang, J.-S., Bow, H., Cheng, Y., Han, J. (2008-01). Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules. Electrophoresis 29 (2) : 329-339. ScholarBank@NUS Repository.
Abstract: This article proposes a simple computational transport model of rod-like short dsDNA molecules through a microfabricated nanofilter array. Using a nanochannel consisting of alternate deep wells and shallow slits, it is demonstrated that the complex partitioning of rod-like DNA molecules of different sizes over the nanofilter array can be well described by continuum transport theory with the orientational entropy and anisotropic transport parameters properly quantified. In this model, orientational entropy of the rod-like DNA is calculated from the equilibrium distribution of rigid cylindrical rod near the solid wall. The flux caused by entropic differences is derived from the interaction between the DNA rods and the solid channel wall during rotational diffusion. In addition to its role as an entropic barrier, the confinement of the DNA in the shallow channels also induces large changes in the effective electrophoretic mobility for longer molecules in the presence of EOF. In addition to the partitioning/selectivity of DNA molecules by the nanofilter, this model can also be used to estimate the dispersion of separated peaks. It allows for fast optimization of nanofilter separation devices, without the need of stochastic modeling techniques that are usually required. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Electrophoresis
ISSN: 01730835
DOI: 10.1002/elps.200700679
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 22, 2021


checked on Jun 22, 2021

Page view(s)

checked on Jun 23, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.