Please use this identifier to cite or link to this item:
Title: Detecting and supporting known item queries in online public access catalogs
Authors: Kan, M.-Y. 
Poo, D.C.C. 
Keywords: Known item queries
Query language model
Query types
Issue Date: 2005
Citation: Kan, M.-Y.,Poo, D.C.C. (2005). Detecting and supporting known item queries in online public access catalogs. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries : 91-99. ScholarBank@NUS Repository.
Abstract: When users seek to find specific resources in a digital library, they often use the library catalog to locate them. These catalog queries are defined as known item queries. As known item queries search for specific resources, it is important to manage them differently from other search types, such as area searches. We study how to identify known item queries in the context of a large academic institution's online public access catalog (OPAC), in which queries are issued via a simple keyword interface. We also examine how to recognize when a known item query has retrieved the item in question. Our approach combines techniques in machine learning, language modeling and machine translation evaluation metrics to build a classifier capable of distinguishing known item queries and correctly classifies titles for whether they are the known item sought with an 80% and 95% correlation to human performance, respectively on each task. To our knowledge, this is the first report of such work, which has the potential to streamline the user interface of both OPACs and digital libraries in support of known item searches. Copyright 2005 ACM.
Source Title: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries
ISSN: 15525996
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Aug 19, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.