Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-31235-9_37
Title: Sensitive label privacy protection on social network data
Authors: Song, Y.
Karras, P. 
Xiao, Q.
Bressan, S. 
Issue Date: 2012
Citation: Song, Y., Karras, P., Xiao, Q., Bressan, S. (2012). Sensitive label privacy protection on social network data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7338 LNCS : 562-571. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-31235-9_37
Abstract: This paper is motivated by the recognition of the need for a finer grain and more personalized privacy in data publication of social networks. We propose a privacy protection scheme that not only prevents the disclosure of identity of users but also the disclosure of selected features in users' profiles. An individual user can select which features of her profile she wishes to conceal. The social networks are modeled as graphs in which users are nodes and features are labels. Labels are denoted either as sensitive or as non-sensitive. We treat node labels both as background knowledge an adversary may possess, and as sensitive information that has to be protected. We present privacy protection algorithms that allow for graph data to be published in a form such that an adversary who possesses information about a node's neighborhood cannot safely infer its identity and its sensitive labels. To this aim, the algorithms transform the original graph into a graph in which nodes are sufficiently indistinguishable. The algorithms are designed to do so while losing as little information and while preserving as much utility as possible. We evaluate empirically the extent to which the algorithms preserve the original graph's structure and properties. We show that our solution is effective, efficient and scalable while offering stronger privacy guarantees than those in previous research. © 2012 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/41404
ISBN: 9783642312342
ISSN: 03029743
DOI: 10.1007/978-3-642-31235-9_37
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.