Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-15561-1_3
Title: An eye fixation database for saliency detection in images
Authors: Ramanathan, S.
Katti, H. 
Sebe, N.
Kankanhalli, M. 
Chua, T.-S. 
Issue Date: 2010
Citation: Ramanathan, S.,Katti, H.,Sebe, N.,Kankanhalli, M.,Chua, T.-S. (2010). An eye fixation database for saliency detection in images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6314 LNCS (PART 4) : 30-43. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-15561-1_3
Abstract: To learn the preferential visual attention given by humans to specific image content, we present NUSEF- an eye fixation database compiled from a pool of 758 images and 75 subjects. Eye fixations are an excellent modality to learn semantics-driven human understanding of images, which is vastly different from feature-driven approaches employed by saliency computation algorithms. The database comprises fixation patterns acquired using an eye-tracker, as subjects free-viewed images corresponding to many semantic categories such as faces (human and mammal), nudes and actions (look, read and shoot). The consistent presence of fixation clusters around specific image regions confirms that visual attention is not subjective, but is directed towards salient objects and object-interactions. We then show how the fixation clusters can be exploited for enhancing image understanding, by using our eye fixation database in an active image segmentation application. Apart from proposing a mechanism to automatically determine characteristic fixation seeds for segmentation, we show that the use of fixation seeds generated from multiple fixation clusters on the salient object can lead to a 10% improvement in segmentation performance over the state-of-the-art. © 2010 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/41377
ISBN: 364215560X
ISSN: 03029743
DOI: 10.1007/978-3-642-15561-1_3
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.