Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-540-85958-1_57
Title: Engineering stochastic local search for the low autocorrelation binary sequence problem
Authors: Halim, S. 
Yap, R.H.C. 
Halim, F. 
Issue Date: 2008
Citation: Halim, S., Yap, R.H.C., Halim, F. (2008). Engineering stochastic local search for the low autocorrelation binary sequence problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5202 LNCS : 640-645. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-540-85958-1_57
Abstract: This paper engineers a new state-of-the-art Stochastic Local Search (SLS) for the Low Autocorrelation Binary Sequence (LABS) problem. The new SLS solver is obtained with white-box visualization to get insights on how an SLS can be effective for LABS; implementation improvements; and black-box parameter tuning. © 2008 Springer-Verlag Berlin Heidelberg.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/40704
ISBN: 3540859578
ISSN: 03029743
DOI: 10.1007/978-3-540-85958-1_57
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.