Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-540-85958-1_57
Title: Engineering stochastic local search for the low autocorrelation binary sequence problem
Authors: Halim, S. 
Yap, R.H.C. 
Halim, F. 
Issue Date: 2008
Source: Halim, S.,Yap, R.H.C.,Halim, F. (2008). Engineering stochastic local search for the low autocorrelation binary sequence problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5202 LNCS : 640-645. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-540-85958-1_57
Abstract: This paper engineers a new state-of-the-art Stochastic Local Search (SLS) for the Low Autocorrelation Binary Sequence (LABS) problem. The new SLS solver is obtained with white-box visualization to get insights on how an SLS can be effective for LABS; implementation improvements; and black-box parameter tuning. © 2008 Springer-Verlag Berlin Heidelberg.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/40704
ISBN: 3540859578
ISSN: 03029743
DOI: 10.1007/978-3-540-85958-1_57
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Dec 13, 2017

Page view(s)

65
checked on Dec 16, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.