Please use this identifier to cite or link to this item: https://doi.org/10.1038/nature19363
Title: Molecular transport through capillaries made with atomic-scale precision
Authors: Radha, B
Esfandiar, A
Wang, FC
Rooney, AP
Gopinadhan, K 
Keerthi, A
Mishchenko, A
Janardanan, A
Blake, P 
Fumagalli, L
Lozada-Hidalgo, M
Garaj, S 
Haigh, SJ
Grigorieva, IV
Wu, HA
Geim, AK 
Keywords: Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
CARBON NANOTUBE MEMBRANES
DER-WAALS HETEROSTRUCTURES
FAST WATER TRANSPORT
POROUS GRAPHENE
MASS-TRANSPORT
GRAPHITE
DYNAMICS
FLOW
NANOFLUIDICS
INTERFACES
Issue Date: 13-Oct-2016
Publisher: NATURE PUBLISHING GROUP
Citation: Radha, B, Esfandiar, A, Wang, FC, Rooney, AP, Gopinadhan, K, Keerthi, A, Mishchenko, A, Janardanan, A, Blake, P, Fumagalli, L, Lozada-Hidalgo, M, Garaj, S, Haigh, SJ, Grigorieva, IV, Wu, HA, Geim, AK (2016-10-13). Molecular transport through capillaries made with atomic-scale precision. NATURE 538 (7624) : 222-+. ScholarBank@NUS Repository. https://doi.org/10.1038/nature19363
Abstract: Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.
Source Title: NATURE
URI: https://scholarbank.nus.edu.sg/handle/10635/238739
ISSN: 0028-0836
1476-4687
DOI: 10.1038/nature19363
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Radha et al. 2016 - Nature - Molecular transport through capillaries made with atomic-scale precision.pdf4.35 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.