Please use this identifier to cite or link to this item: https://doi.org/10.3390/w13111551
Title: Satellite dem improvement using multispectral imagery and an artificial neural network
Authors: Kim, Dong Eon 
Liu, Jiandong 
Liong, Shie-Yui 
Gourbesville, Philippe
Strunz, Guenter
Keywords: Artificial neural network
Digital elevation model
Remote sensing
Issue Date: 31-May-2021
Publisher: MDPI AG
Citation: Kim, Dong Eon, Liu, Jiandong, Liong, Shie-Yui, Gourbesville, Philippe, Strunz, Guenter (2021-05-31). Satellite dem improvement using multispectral imagery and an artificial neural network. Water (Switzerland) 13 (11) : 1551. ScholarBank@NUS Repository. https://doi.org/10.3390/w13111551
Rights: Attribution 4.0 International
Abstract: The digital elevation model (DEM) is crucial for various applications, such as land management and flood planning, as it reflects the actual topographic characteristic on the Earth’s surface. However, it is quite a challenge to acquire the high-quality DEM, as it is very time-consuming, costly, and often confidential. This paper explores a DEM improvement scheme using an artificial neural network (ANN) that could improve the German Aerospace’s TanDEM-X (12 m resolution). The ANN was first trained in Nice, France, with a high spatial resolution surveyed DEM (1 m) and then applied on a faraway city, Singapore, for validation. In the ANN training, Sentinel-2 and TanDEM-X data of the Nice area were used as the input data, while the ground truth observation data of Nice were used as the target data. The applicability of iTanDEM-X was finally conducted at a different site in Singapore. The trained iTanDEM-X shows a significant reduction in the root mean square error of 43.6% in Singapore. It was also found that the improvement for different land covers (e.g., vegetation and built-up areas) ranges from 20 to 65%. The paper also demonstrated the application of the trained ANN on Ho Chi Minh City, Vietnam, where the ground truth data are not available; for cases such as this, a visual comparison with Google satellite imagery was then utilized. The DEM from iTanDEM-X with 10 m resolution categorically shows much clearer land shapes (particularly the roads and buildings). © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Source Title: Water (Switzerland)
URI: https://scholarbank.nus.edu.sg/handle/10635/233704
ISSN: 2073-4441
DOI: 10.3390/w13111551
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_w13111551.pdf4.17 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons