Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.compbiomed.2021.104497
Title: | Comparison of metrics for the evaluation of medical segmentations using prostate MRI dataset | Authors: | Nai, Ying-Hwey Teo, Bernice W. Tan, Nadya L. O'Doherty, Sophie Stephenson, Mary C. Thian, Yee Liang Chiong, Edmund Reilhac, Anthonin |
Keywords: | Deep learning Evaluation metrics Medical image segmentation Prostate cancer Rank evaluation |
Issue Date: | 1-Jul-2021 | Publisher: | Elsevier Ltd | Citation: | Nai, Ying-Hwey, Teo, Bernice W., Tan, Nadya L., O'Doherty, Sophie, Stephenson, Mary C., Thian, Yee Liang, Chiong, Edmund, Reilhac, Anthonin (2021-07-01). Comparison of metrics for the evaluation of medical segmentations using prostate MRI dataset. Computers in Biology and Medicine 134 : 104497. ScholarBank@NUS Repository. https://doi.org/10.1016/j.compbiomed.2021.104497 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International | Abstract: | Nine previously proposed segmentation evaluation metrics, targeting medical relevance, accounting for holes, and added regions or differentiating over- and under-segmentation, were compared with 24 traditional metrics to identify those which better capture the requirements for clinical segmentation evaluation. Evaluation was first performed using 2D synthetic shapes to highlight features and pitfalls of the metrics with known ground truths (GTs) and machine segmentations (MSs). Clinical evaluation was then performed using publicly-available prostate images of 20 subjects with MSs generated by 3 different deep learning networks (DenseVNet, HighRes3DNet, and ScaleNet) and GTs drawn by 2 readers. The same readers also performed the 2D visual assessment of the MSs using a dual negative-positive grading of ?5 to 5 to reflect over- and under-estimation. Nine metrics that correlated well with visual assessment were selected for further evaluation using 3 different network ranking methods - based on a single metric, normalizing the metric using 2 GTs, and ranking the network based on a metric then averaging, including leave-one-out evaluation. These metrics yielded consistent ranking with HighRes3DNet ranked first then DenseVNet and ScaleNet using all ranking methods. Relative volume difference yielded the best positivity-agreement and correlation with dual visual assessment, and thus is better for providing over- and under-estimation. Interclass Correlation yielded the strongest correlation with the absolute visual assessment (0–5). Symmetric-boundary dice consistently yielded good discrimination of the networks for all three ranking methods with relatively small variations within network. Good rank discrimination may be an additional metric feature required for better network performance evaluation. © 2021 The Author(s) | Source Title: | Computers in Biology and Medicine | URI: | https://scholarbank.nus.edu.sg/handle/10635/232919 | ISSN: | 0010-4825 | DOI: | 10.1016/j.compbiomed.2021.104497 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International |
Appears in Collections: | Elements Staff Publications |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1016_j_compbiomed_2021_104497.pdf | 6.2 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License