Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.celrep.2021.109775
DC FieldValue
dc.titleDiversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain
dc.contributor.authorD'Gama, Percival P.
dc.contributor.authorQiu, Tao
dc.contributor.authorCosacak, Mehmet Ilyas
dc.contributor.authorRayamajhi, Dheeraj
dc.contributor.authorKonac, Ahsen
dc.contributor.authorHansen, Jan Niklas
dc.contributor.authorRingers, Christa
dc.contributor.authorAcuña-Hinrichsen, Francisca
dc.contributor.authorHui, Subhra P.
dc.contributor.authorOlstad, Emilie W.
dc.contributor.authorChong, Yan Ling
dc.contributor.authorLim, Charlton Kang An
dc.contributor.authorGupta, Astha
dc.contributor.authorNg, Chee Peng
dc.contributor.authorNilges, Benedikt S.
dc.contributor.authorKashikar, Nachiket D.
dc.contributor.authorWachten, Dagmar
dc.contributor.authorLiebl, David
dc.contributor.authorKikuchi, Kazu
dc.contributor.authorKizil, Caghan
dc.contributor.authorYaksi, Emre
dc.contributor.authorRoy, Sudipto
dc.contributor.authorJurisch-Yaksi, Nathalie
dc.date.accessioned2022-10-13T01:11:48Z
dc.date.available2022-10-13T01:11:48Z
dc.date.issued2021-10-01
dc.identifier.citationD'Gama, Percival P., Qiu, Tao, Cosacak, Mehmet Ilyas, Rayamajhi, Dheeraj, Konac, Ahsen, Hansen, Jan Niklas, Ringers, Christa, Acuña-Hinrichsen, Francisca, Hui, Subhra P., Olstad, Emilie W., Chong, Yan Ling, Lim, Charlton Kang An, Gupta, Astha, Ng, Chee Peng, Nilges, Benedikt S., Kashikar, Nachiket D., Wachten, Dagmar, Liebl, David, Kikuchi, Kazu, Kizil, Caghan, Yaksi, Emre, Roy, Sudipto, Jurisch-Yaksi, Nathalie (2021-10-01). Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Reports 37 (1) : 109775. ScholarBank@NUS Repository. https://doi.org/10.1016/j.celrep.2021.109775
dc.identifier.issn2211-1247
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/232799
dc.description.abstractMotile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles. We show that the ventricles undergo restructuring through development, involving a transition from mono- to multiciliated cells (MCCs) driven by gmnc. MCCs co-exist with monociliated cells and generate directional flow patterns. These ciliated cells have different developmental origins and are genetically heterogenous with respect to expression of the Foxj1 family of ciliary master regulators. Finally, we show that cilia loss from the tela choroida and choroid plexus or global perturbation of multiciliation does not affect overall brain or spine morphogenesis but results in enlarged ventricles. Our findings establish that motile ciliated cells are generated by complementary and sequential transcriptional programs to support ventricular development. © 2021 The Author(s)
dc.publisherElsevier B.V.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus OA2021
dc.subjectbrain
dc.subjectcerebrospinal fluid
dc.subjectchoroid plexus
dc.subjectcilia
dc.subjectependymal cell
dc.subjectfoxj1
dc.subjectgmnc
dc.subjectmulticiliated cells
dc.subjectscoliosis
dc.subjectzebrafish
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1016/j.celrep.2021.109775
dc.description.sourcetitleCell Reports
dc.description.volume37
dc.description.issue1
dc.description.page109775
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1016_j_celrep_2021_109775.pdf23.36 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons