Please use this identifier to cite or link to this item:
Title: Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy
Authors: Gupta, Nitin Kumar
Somani, Nalin
Prakash, Chander
Singh, Ranjit
Walia, Arminder Singh
Singh, Sunpreet 
Pruncu, Catalin Iulian
Keywords: Cutting speed
Material removal rate
Surface roughness
Titanium alloy
Issue Date: 28-Apr-2021
Publisher: MDPI AG
Citation: Gupta, Nitin Kumar, Somani, Nalin, Prakash, Chander, Singh, Ranjit, Walia, Arminder Singh, Singh, Sunpreet, Pruncu, Catalin Iulian (2021-04-28). Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy. Materials 14 (9) : 2292. ScholarBank@NUS Repository.
Rights: Attribution 4.0 International
Abstract: Ti-6Al-4V is an alloy that has a high strength-to-weight ratio. It is known as an alpha-beta titanium alloy with excellent corrosion resistance. This alloy has a wide range of applications, e.g., in the aerospace and biomedical industries. Examples of alpha stabilizers are aluminum, oxygen, nitrogen, and carbon, which are added to titanium. Examples of beta stabilizers are titanium-iron, titanium-chromium, and titanium-manganese. Despite the exceptional properties, the processing of this titanium alloy is challenging when using conventional methods as it is quite a hard and tough material. Nonconventional methods are required to create intricate and complex geometries, which are difficult with the traditional methods. The present study focused on machining Ti-6Al- 4V using wire electrical discharge machining (WEDM) and conducting numerous experiments to establish the machining parameters. The optimal setting of the machining parameters was predicted using a multiresponse optimization technique. Experiments were planned using the response surface methodology (RSM) technique and analysis of variance (ANOVA) was used to determine the significance and contribution of the input parameters to changes in the output characteristics (cutting speed and surface roughness). The cutting speed obtained during the processing of the annealed titanium alloy using WEDM was quite large as compared to the cutting speed obtained in the case of processing the pure, quenched, and hardened titanium alloys using WEDM. The maximum cutting speed obtained while processing the annealed titanium alloy was 1.75 mm/min. © 2021 by the authors.
Source Title: Materials
ISSN: 1996-1944
DOI: 10.3390/ma14092292
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_ma14092292.pdf6.21 MBAdobe PDF




checked on Nov 29, 2022

Page view(s)

checked on Dec 1, 2022

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons