Please use this identifier to cite or link to this item:
https://doi.org/10.1093/cercor/bhab456
DC Field | Value | |
---|---|---|
dc.title | A Nonlinear Hidden Layer Enables Actor-Critic Agents to Learn Multiple Paired Association Navigation. | |
dc.contributor.author | Kumar, M Ganesh | |
dc.contributor.author | Tan, Cheston | |
dc.contributor.author | Libedinsky, Camilo | |
dc.contributor.author | Yen, Shih-Cheng | |
dc.contributor.author | Tan, Andrew YY | |
dc.date.accessioned | 2022-04-08T07:36:17Z | |
dc.date.available | 2022-04-08T07:36:17Z | |
dc.date.issued | 2022-01-17 | |
dc.identifier.citation | Kumar, M Ganesh, Tan, Cheston, Libedinsky, Camilo, Yen, Shih-Cheng, Tan, Andrew YY (2022-01-17). A Nonlinear Hidden Layer Enables Actor-Critic Agents to Learn Multiple Paired Association Navigation.. Cereb Cortex. ScholarBank@NUS Repository. https://doi.org/10.1093/cercor/bhab456 | |
dc.identifier.issn | 10473211 | |
dc.identifier.issn | 14602199 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/218744 | |
dc.description.abstract | Navigation to multiple cued reward locations has been increasingly used to study rodent learning. Though deep reinforcement learning agents have been shown to be able to learn the task, they are not biologically plausible. Biologically plausible classic actor-critic agents have been shown to learn to navigate to single reward locations, but which biologically plausible agents are able to learn multiple cue-reward location tasks has remained unclear. In this computational study, we show versions of classic agents that learn to navigate to a single reward location, and adapt to reward location displacement, but are not able to learn multiple paired association navigation. The limitation is overcome by an agent in which place cell and cue information are first processed by a feedforward nonlinear hidden layer with synapses to the actor and critic subject to temporal difference error-modulated plasticity. Faster learning is obtained when the feedforward layer is replaced by a recurrent reservoir network. | |
dc.publisher | Oxford University Press (OUP) | |
dc.source | Elements | |
dc.subject | Hebbian plasticity | |
dc.subject | reinforcement learning | |
dc.subject | temporal difference error | |
dc.type | Article | |
dc.date.updated | 2022-04-07T04:35:36Z | |
dc.contributor.department | DEAN'S OFFICE (ENGINEERING) | |
dc.contributor.department | PHYSIOLOGY | |
dc.description.doi | 10.1093/cercor/bhab456 | |
dc.description.sourcetitle | Cereb Cortex | |
dc.published.state | Unpublished | |
Appears in Collections: | Staff Publications Elements Students Publications |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
Cerebral Cortex resubmission 2111051235 NUS ScholarBank.pdf | Accepted version | 5.15 MB | Adobe PDF | OPEN | Post-print | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.