Please use this identifier to cite or link to this item:
Title: A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency
Authors: Zhang, X
Wang, Y 
Liu, J
Shi, J
Mao, D 
Midgley, AC
Leng, X
Kong, D
Wang, Z
Liu, B 
Wang, S
Issue Date: 1-Oct-2021
Publisher: Elsevier BV
Citation: Zhang, X, Wang, Y, Liu, J, Shi, J, Mao, D, Midgley, AC, Leng, X, Kong, D, Wang, Z, Liu, B, Wang, S (2021-10-01). A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chemical Engineering Journal 421 : 129577-129577. ScholarBank@NUS Repository.
Abstract: Copper-MOFs (Cu-MOFs) have been reported to demonstrate great potential as cardiovascular biomaterials, due to enhanced catalytic ability of Cu2+ to generate nitric oxide (NO) from endogenous S-nitrosothiols (RSNOs). However, free Cu-MOFs usually show rapid degradation under physiological conditions, resulting in short catalytic half-life and risk of copper ion toxicity. Therefore, how to increase the stability of Cu-MOFs is of great importance in cardiovascular biomaterials research. Herein, we chose M199 MOF as an example and developed Cu-MOF-based scaffold, using the electrospinning method to embed Cu-MOF nanoparticles into polycaprolactone (PCL) fibers. Entrapment of Cu-MOF nanoparticles within PCL could simultaneously enhance Cu-MOF stability in serum and allow for long-term NO catalytic activity, as assessed by in vitro assays and using in situ implantation models. Additionally, the optimized concentration of Cu-MOFs loaded within the scaffolds significantly promoted endothelial cell (EC) migration and increased acetylated low-density lipoprotein (Ac-LDL) uptake. Moreover, Cu-MOF-based scaffolds dramatically inhibited platelet adhesion and activation, which markedly reduced acute thrombosis in arterio-venous shunt models. In situ implantation experiments revealed that the PCL/Cu-MOF scaffolds accelerated the formation of an intact endothelial monolayer. Together, these results suggest that the incorporation of Cu-MOFs into electrospun fibers could serve as a promising approach to achieve stable catalytic performance and long-term activity required for implant materials.
Source Title: Chemical Engineering Journal
ISSN: 13858947
DOI: 10.1016/j.cej.2021.129577
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
A metal-organic frameworks inserted vascular grafts for sustained nitric oxide generation and long-term vascular patency.pdfAccepted version1.38 MBAdobe PDF




checked on Oct 1, 2022

Page view(s)

checked on Sep 29, 2022


checked on Sep 29, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.