Please use this identifier to cite or link to this item: https://doi.org/10.1039/d1ta09249a
DC FieldValue
dc.titlePhase stability and sodium-vacancy orderings in a NaSICON electrode
dc.contributor.authorWang, Ziliang
dc.contributor.authorPark, Sunkyu
dc.contributor.authorDeng, Zeyu
dc.contributor.authorCarlier, Dany
dc.contributor.authorChotard, Jean-Noel
dc.contributor.authorCroguennec, Laurence
dc.contributor.authorGautam, Gopalakrishnan Sai
dc.contributor.authorCheetham, Anthony K
dc.contributor.authorMasquelier, Christian
dc.contributor.authorCanepa, Pieremanuele
dc.date.accessioned2022-01-10T02:14:42Z
dc.date.available2022-01-10T02:14:42Z
dc.date.issued2021-12-02
dc.identifier.citationWang, Ziliang, Park, Sunkyu, Deng, Zeyu, Carlier, Dany, Chotard, Jean-Noel, Croguennec, Laurence, Gautam, Gopalakrishnan Sai, Cheetham, Anthony K, Masquelier, Christian, Canepa, Pieremanuele (2021-12-02). Phase stability and sodium-vacancy orderings in a NaSICON electrode. JOURNAL OF MATERIALS CHEMISTRY A 10 (1) : 209-217. ScholarBank@NUS Repository. https://doi.org/10.1039/d1ta09249a
dc.identifier.issn20507488
dc.identifier.issn20507496
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/213476
dc.description.abstractWe elucidate the complex thermodynamics of sodium (Na) intercalation into the sodium super-ionic conductor (NaSICON)-type electrode, NaxV2(PO4)3, for promising Na-ion batteries with high-power density. This is the first report of a computational temperature-composition phase diagram of the NaSICON-type electrode NaxV2(PO4)3. Based on our computational data, we identify a thermodynamically stable phase with a composition of Na2V2(PO4)3and describe its structural features. We also identify another metastable configuration that can occur at room temperature, namely Na3.5V2(PO4)3. We unveil the crystal-structure and the electronic-structure origins of the ground-state compositions associated with specific Na/vacancy arrangements, which are driven by charge orderings on the vanadium sites. These results are significant for the optimization of high-energy and power density electrodes for sustainable Na-ion batteries.
dc.language.isoen
dc.publisherROYAL SOC CHEMISTRY
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectTOTAL-ENERGY CALCULATIONS
dc.subjectRECHARGEABLE BATTERY
dc.subjectCRYSTAL-CHEMISTRY
dc.subjectION BATTERIES
dc.subjectLIFEPO4
dc.subjectNA
dc.subjectSYSTEM
dc.subjectTRANSITION
dc.subjectCATHODE
dc.subjectLITHIUM
dc.typeArticle
dc.date.updated2022-01-08T18:33:33Z
dc.contributor.departmentCOLLEGE OF DESIGN AND ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1039/d1ta09249a
dc.description.sourcetitleJOURNAL OF MATERIALS CHEMISTRY A
dc.description.volume10
dc.description.issue1
dc.description.page209-217
dc.published.statePublished
Appears in Collections:Elements
Staff Publications
Students Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2109.06997v1.pdfAccepted version5.08 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.