Please use this identifier to cite or link to this item: https://doi.org/10.1126/sciadv.aau6696
DC FieldValue
dc.titleLarge spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn
dc.contributor.authorZhou, J.
dc.contributor.authorWang, X.
dc.contributor.authorLiu, Y.
dc.contributor.authorYu, J.
dc.contributor.authorFu, H.
dc.contributor.authorLiu, L.
dc.contributor.authorChen, S.
dc.contributor.authorDeng, J.
dc.contributor.authorLin, W.
dc.contributor.authorShu, X.
dc.contributor.authorYoong, H.Y.
dc.contributor.authorHong, T.
dc.contributor.authorMatsuda, M.
dc.contributor.authorYang, P.
dc.contributor.authorAdams, S.
dc.contributor.authorYan, B.
dc.contributor.authorHan, X.
dc.contributor.authorChen, J.
dc.date.accessioned2021-12-29T05:46:45Z
dc.date.available2021-12-29T05:46:45Z
dc.date.issued2019
dc.identifier.citationZhou, J., Wang, X., Liu, Y., Yu, J., Fu, H., Liu, L., Chen, S., Deng, J., Lin, W., Shu, X., Yoong, H.Y., Hong, T., Matsuda, M., Yang, P., Adams, S., Yan, B., Han, X., Chen, J. (2019). Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Science Advances 5 (5) : eaau6696. ScholarBank@NUS Repository. https://doi.org/10.1126/sciadv.aau6696
dc.identifier.issn2375-2548
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/212495
dc.description.abstractSpin-orbit torque (SOT) offers promising approaches to developing energy-efficient memory devices by electric switching of magnetization. Compared to other SOT materials, metallic antiferromagnet (AFM) potentially allows the control of SOT through its magnetic structure. Here, combining the results from neutron diffraction and spin-torque ferromagnetic resonance experiments, we show that the magnetic structure of epitaxially grown L10-IrMn (a collinear AFM) is distinct from the widely presumed bulk one. It consists of twin domains, with the spin axes orienting toward [111] and [-111], respectively. This unconventional magnetic structure is responsible for much larger SOT efficiencies up to 0.60 ± 0.04, compared to 0.083 ± 0.002 for the polycrystalline IrMn. Furthermore, we reveal that this magnetic structure induces a large isotropic bulk contribution and a comparable anisotropic interfacial contribution to the SOT efficiency. Our findings shed light on the critical roles of bulk and interfacial antiferromagnetism to SOT generated by metallic AFM. © 2019 The Authors.
dc.publisherAmerican Association for the Advancement of Science
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScopus OA2019
dc.typeArticle
dc.contributor.departmentDEPT OF MATERIALS SCIENCE & ENGINEERING
dc.contributor.departmentSINGAPORE SYNCHROTRON LIGHT SOURCE
dc.description.doi10.1126/sciadv.aau6696
dc.description.sourcetitleScience Advances
dc.description.volume5
dc.description.issue5
dc.description.pageeaau6696
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1126_sciadv_aau6696.pdf1.86 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

51
checked on Nov 25, 2022

Page view(s)

80
checked on Nov 17, 2022

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons