Please use this identifier to cite or link to this item: https://doi.org/10.3390/pathogens8030093
Title: Surface immobilization of nano-silver on polymeric medical devices to prevent bacterial biofilm formation
Authors: Riau, A.K.
Aung, T.T.
Setiawan, M.
Yang, L.
Yam, G.H.F. 
Beuerman, R.W. 
Venkatraman, S.S.
Mehta, J.S. 
Keywords: Biofilm
Cornea
Nanoparticles
Polymer
Silver
Toxicity
Issue Date: 2019
Publisher: MDPI AG
Citation: Riau, A.K., Aung, T.T., Setiawan, M., Yang, L., Yam, G.H.F., Beuerman, R.W., Venkatraman, S.S., Mehta, J.S. (2019). Surface immobilization of nano-silver on polymeric medical devices to prevent bacterial biofilm formation. Pathogens 8 (3) : 93. ScholarBank@NUS Repository. https://doi.org/10.3390/pathogens8030093
Rights: Attribution 4.0 International
Abstract: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates— high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
Source Title: Pathogens
URI: https://scholarbank.nus.edu.sg/handle/10635/210744
ISSN: 20760817
DOI: 10.3390/pathogens8030093
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_pathogens8030093.pdf3.66 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons