Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jmat.2019.09.001
Title: Correlation of resistance switching and polarization rotation in copper doped zinc oxide (ZnO:Cu) thin films studied by Scanning Probe Microscopy
Authors: Xiao, J. 
Herng, T.S. 
Guo, Y.
Ding, J. 
Wang, N.
Zeng, K. 
Keywords: Built-in voltage
Next generation memory
Polarization rotation
Resistive switching
ZnO:Cu thin film
Issue Date: 2019
Publisher: Chinese Ceramic Society
Citation: Xiao, J., Herng, T.S., Guo, Y., Ding, J., Wang, N., Zeng, K. (2019). Correlation of resistance switching and polarization rotation in copper doped zinc oxide (ZnO:Cu) thin films studied by Scanning Probe Microscopy. Journal of Materiomics 5 (4) : 574-582. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmat.2019.09.001
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Abstract: This paper presents multiple-modes Scanning Probe Microscopy (SPM) studies on characterize the correlation of resistance switching (RS) and polarization rotation (PR) in copper doped ZnO (ZnO:Cu) thin films. Firstly, the bipolar RS behavior is confirmed by conductive Atomic Force Microscopy (c-AFM). The PR with almost 180° phase angle is confirmed by using the Piezoresponse Force Microscopy (PFM) on the same location. In addition, it elucidates that obvious PR behavior can be observed in the sample with increasing Cu concentration by combining Kelvin Probe Force Microscopy (KPFM). Furthermore, it is found that the region with downward polarization has low resistance state (LRS), whereas the region with upward polarization has high resistance state (HRS). Moreover, the Piezoresponse Force Spectroscopy (PFS) and Switching Spectroscopy PFM (SS-PFM) measurements further confirm that the existence of the built-in voltage, Vbuilt-in is largest in the ZnO:Cu (8 at.%) film deposited at the oxygen partial pressure of 2 × 10?4 Torr. The schematic diagrams of energy band diagram with varied built-in field, Ebuilt-in, polarization directions and redistributed charges are presented to explain the correlation between RS and PR behavior. © 2019 The Chinese Ceramic Society
Source Title: Journal of Materiomics
URI: https://scholarbank.nus.edu.sg/handle/10635/210683
ISSN: 23528478
DOI: 10.1016/j.jmat.2019.09.001
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1016_j_jmat_2019_09_001.pdf3.42 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons