Please use this identifier to cite or link to this item:
Title: Layered material platform for surface plasmon resonance biosensing
Authors: Wu, F.
Thomas, P.A.
Kravets, V.G.
Arola, H.O.
Soikkeli, M.
Iljin, K.
Kim, G.
Kim, M.
Shin, H.S.
Andreeva, D.V. 
Neumann, C.
Küllmer, M.
Turchanin, A.
De Fazio, D.
Balci, O.
Babenko, V.
Luo, B.
Goykhman, I.
Hofmann, S.
Ferrari, A.C.
Novoselov, K.S. 
Grigorenko, A.N.
Issue Date: 2019
Publisher: Nature Research
Citation: Wu, F., Thomas, P.A., Kravets, V.G., Arola, H.O., Soikkeli, M., Iljin, K., Kim, G., Kim, M., Shin, H.S., Andreeva, D.V., Neumann, C., Küllmer, M., Turchanin, A., De Fazio, D., Balci, O., Babenko, V., Luo, B., Goykhman, I., Hofmann, S., Ferrari, A.C., Novoselov, K.S., Grigorenko, A.N. (2019). Layered material platform for surface plasmon resonance biosensing. Scientific Reports 9 (1) : 20286. ScholarBank@NUS Repository.
Rights: Attribution 4.0 International
Abstract: Plasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing. © 2019, The Author(s).
Source Title: Scientific Reports
ISSN: 2045-2322
DOI: 10.1038/s41598-019-56105-7
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41598-019-56105-7.pdf2.18 MBAdobe PDF




checked on May 21, 2022

Page view(s)

checked on May 12, 2022

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons