Please use this identifier to cite or link to this item:
Title: Short-Term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
Authors: Zhou, H.
Zhang, Y.
Yang, L.
Liu, Q.
Yan, K. 
Du, Y.
Keywords: attention mechanism
long short term memory
PV power generation
short-Term forecasting
Issue Date: 2019
Publisher: Institute of Electrical and Electronics Engineers Inc.
Citation: Zhou, H., Zhang, Y., Yang, L., Liu, Q., Yan, K., Du, Y. (2019). Short-Term photovoltaic power forecasting based on long short term memory neural network and attention mechanism. IEEE Access 7 : 78063-78074. ScholarBank@NUS Repository.
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Abstract: Photovoltaic power generation forecasting is an important topic in the field of sustainable power system design, energy conversion management, and smart grid construction. Difficulties arise while the generated PV power is usually unstable due to the variability of solar irradiance, temperature, and other meteorological factors. In this paper, a hybrid ensemble deep learning framework is proposed to forecast short-Term photovoltaic power generation in a time series manner. Two LSTM neural networks are employed working on temperature and power outputs forecasting, respectively. The forecasting results are flattened and combined with a fully connected layer to enhance forecasting accuracy. Moreover, we adopted the attention mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant in forecasting. Comprehensive experiments are conducted with recently collected real-world photovoltaic power generation datasets. Three error metrics were adopted to compare the forecasting results produced by attention LSTM model with state-of-Art methods, including the persistent model, the auto-regressive integrated moving average model with exogenous variable (ARIMAX), multi-layer perceptron (MLP), and the traditional LSTM model in all four seasons and various forecasting horizons to show the effectiveness and robustness of the proposed method. © 2013 IEEE.
Source Title: IEEE Access
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2923006
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1109_ACCESS_2019_2923006.pdf11.04 MBAdobe PDF



Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons