Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-020-15918-1
Title: Confining H3PO4 network in covalent organic frameworks enables proton super flow
Authors: Tao, S.
Zhai, L.
Dinga Wonanke, A.D.
Addicoat, M.A.
Jiang, Q.
Jiang, D. 
Issue Date: 2020
Publisher: Nature Research
Citation: Tao, S., Zhai, L., Dinga Wonanke, A.D., Addicoat, M.A., Jiang, Q., Jiang, D. (2020). Confining H3PO4 network in covalent organic frameworks enables proton super flow. Nature Communications 11 (1) : 1981. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-020-15918-1
Rights: Attribution 4.0 International
Abstract: Development of porous materials combining stability and high performance has remained a challenge. This is particularly true for proton-transporting materials essential for applications in sensing, catalysis and energy conversion and storage. Here we report the topology guided synthesis of an imine-bonded (C=N) dually stable covalent organic framework to construct dense yet aligned one-dimensional nanochannels, in which the linkers induce hyperconjugation and inductive effects to stabilize the pore structure and the nitrogen sites on pore walls confine and stabilize the H3PO4 network in the channels via hydrogen-bonding interactions. The resulting materials enable proton super flow to enhance rates by 2–8 orders of magnitude compared to other analogues. Temperature profile and molecular dynamics reveal proton hopping at low activation and reorganization energies with greatly enhanced mobility. © 2020, The Author(s).
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/197989
ISSN: 2041-1723
DOI: 10.1038/s41467-020-15918-1
Rights: Attribution 4.0 International
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467_020_15918_1.pdf1.23 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons