Please use this identifier to cite or link to this item: https://doi.org/10.1017/fmp.2020.12
Title: Proof of a conjecture of Galvin
Authors: Raghavan, D. 
Todorcevic, S.
Keywords: 03E02
03E55
05C55
05D10
54E40
MSC Codes
Issue Date: 2020
Publisher: Cambridge University Press
Citation: Raghavan, D., Todorcevic, S. (2020). Proof of a conjecture of Galvin. Forum of Mathematics, Pi : e15. ScholarBank@NUS Repository. https://doi.org/10.1017/fmp.2020.12
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Abstract: We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals. © The Author(s), 2020. Published by Cambridge University Press.
Source Title: Forum of Mathematics, Pi
URI: https://scholarbank.nus.edu.sg/handle/10635/196952
ISSN: 20505086
DOI: 10.1017/fmp.2020.12
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1017_fmp_2020_12.pdf506.63 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons