Please use this identifier to cite or link to this item: https://doi.org/10.1109/JIOT.2021.3051480
Title: Cost-aware Feature Selection for IoT Device Classification
Authors: Chakraborty, B
Divakaran, DM 
Nevat, I
Peters, GW
Gurusamy, M 
Keywords: cs.NI
cs.NI
cs.CR
cs.LG
Issue Date: 1-Jan-2021
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Citation: Chakraborty, B, Divakaran, DM, Nevat, I, Peters, GW, Gurusamy, M (2021-01-01). Cost-aware Feature Selection for IoT Device Classification. IEEE Internet of Things Journal 8 (14) : 11052-11064. ScholarBank@NUS Repository. https://doi.org/10.1109/JIOT.2021.3051480
Abstract: Classification of IoT devices into different types is of paramount importance, from multiple perspectives, including security and privacy aspects. Recent works have explored machine learning techniques for fingerprinting (or classifying) IoT devices, with promising results. However, existing works have assumed that the features used for building the machine learning models are readily available or can be easily extracted from the network traffic; in other words, they do not consider the costs associated with feature extraction. In this work, we take a more realistic approach, and argue that feature extraction has a cost, and the costs are different for different features. We also take a step forward from the current practice of considering the misclassification loss as a binary value, and make a case for different losses based on the misclassification performance. Thereby, and more importantly, we introduce the notion of risk for IoT device classification. We define and formulate the problem of cost-aware IoT device classification. This being a combinatorial optimization problem, we develop a novel algorithm to solve it in a fast and effective way using the Cross-Entropy (CE) based stochastic optimization technique. Using traffic of real devices, we demonstrate the capability of the CE based algorithm in selecting features with minimal risk of misclassification while keeping the cost for feature extraction within a specified limit.
Source Title: IEEE Internet of Things Journal
URI: https://scholarbank.nus.edu.sg/handle/10635/194951
ISSN: 23274662
DOI: 10.1109/JIOT.2021.3051480
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
cost-aware-feature-selection-iot-preprint-2021.pdf500.36 kBAdobe PDF

OPEN

PublishedView/Download

SCOPUSTM   
Citations

1
checked on Jun 28, 2022

Page view(s)

95
checked on Jun 23, 2022

Download(s)

4
checked on Jun 23, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.