Please use this identifier to cite or link to this item: https://doi.org/10.1002/adma.202004370
DC FieldValue
dc.titleNanometer-Scale Uniform Conductance Switching in Molecular Memristors
dc.contributor.authorSreetosh Goswami
dc.contributor.authorDebalina Deb
dc.contributor.authorAgnès Tempez
dc.contributor.authorMarc Chaigneau
dc.contributor.authorSANTI PRASAD RATH
dc.contributor.authorManohar Lal
dc.contributor.authorAriando
dc.contributor.authorR. Stanley Williams
dc.contributor.authorSREEBRATA GOSWAMI
dc.contributor.authorThirumalai Venkatesan
dc.date.accessioned2021-04-09T07:01:14Z
dc.date.available2021-04-09T07:01:14Z
dc.date.issued2020-09-06
dc.identifier.citationSreetosh Goswami, Debalina Deb, Agnès Tempez, Marc Chaigneau, SANTI PRASAD RATH, Manohar Lal, Ariando, R. Stanley Williams, SREEBRATA GOSWAMI, Thirumalai Venkatesan (2020-09-06). Nanometer-Scale Uniform Conductance Switching in Molecular Memristors. Advanced Materials 32 (42). ScholarBank@NUS Repository. https://doi.org/10.1002/adma.202004370
dc.identifier.issn15214095
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/189002
dc.description.abstractOne common challenge highlighted in almost every review article on organic resistive memory is the lack of areal switching uniformity. This, in fact, is a puzzle because a molecular switching mechanism should ideally be isotropic and produce homogeneous current switching free from electroforming. Such a demonstration, however, remains elusive to date. The reports attempting to characterize a nanoscopic picture of switching in molecular films show random current spikes, just opposite to the expectation. Here, this longstanding conundrum is resolved by demonstrating 100% spatially homogeneous current switching (driven by molecular redox) in memristors based on Ru-complexes of azo-aromatic ligands. Through a concurrent nanoscopic spatial mapping using conductive atomic force microscopy and in operando tip-enhanced Raman spectroscopy (both with resolution
dc.language.isoen
dc.publisherWILEY
dc.rightsCC0 1.0 Universal
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectconductive atomic force microscopy
dc.subjectmemristor
dc.subjecttip enhanced Raman spectroscopy
dc.subjecttransition metal complex
dc.subjectuniformity
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.contributor.departmentDEPT OF PHYSICS
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.description.doi10.1002/adma.202004370
dc.description.sourcetitleAdvanced Materials
dc.description.volume32
dc.description.issue42
dc.published.statePublished
dc.grant.idNRF-CRP15-2015-01
dc.grant.fundingagencyNational Research Foundation
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Nanometer-Scale Uniform Conductance Switching in Molecular Memristors.pdf6 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons