Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms11425
DC FieldValue
dc.titleUltraflexible organic amplifier with biocompatible gel electrodes
dc.contributor.authorSekitani, T
dc.contributor.authorYokota, T
dc.contributor.authorKuribara, K
dc.contributor.authorKaltenbrunner, M
dc.contributor.authorFukushima, T
dc.contributor.authorInoue, Y
dc.contributor.authorSekino, M
dc.contributor.authorIsoyama, T
dc.contributor.authorAbe, Y
dc.contributor.authorOnodera, H
dc.contributor.authorSomeya, T
dc.date.accessioned2020-10-31T11:35:51Z
dc.date.available2020-10-31T11:35:51Z
dc.date.issued2016
dc.identifier.citationSekitani, T, Yokota, T, Kuribara, K, Kaltenbrunner, M, Fukushima, T, Inoue, Y, Sekino, M, Isoyama, T, Abe, Y, Onodera, H, Someya, T (2016). Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications 7 : 11425. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms11425
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/182479
dc.description.abstractIn vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-?m-thick polyethylene-naphthalate film to amplify (amplification factor: ?200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. © 2016, Nature Publishing Group. All rights reserved.
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectbiomaterial
dc.subjectcarbon nanotube
dc.subjecthydrogel
dc.subjectnaphthalene derivative
dc.subjectpolyethylene derivative
dc.subjectanimal
dc.subjectcell line
dc.subjectcell survival
dc.subjectchemistry
dc.subjectcytology
dc.subjectdermis
dc.subjectdevices
dc.subjectdrug effects
dc.subjectelectrocardiography
dc.subjectelectrode
dc.subjectelectronics
dc.subjectfemale
dc.subjectfibroblast
dc.subjectForeign-Body Reaction
dc.subjectgoat
dc.subjecthydrogel
dc.subjectmale
dc.subjectpericardium
dc.subjectpharmacology
dc.subjectphysiology
dc.subjectpliability
dc.subjectprocedures
dc.subjectrabbit
dc.subjectrat
dc.subjectAnimals
dc.subjectBiocompatible Materials
dc.subjectCell Line
dc.subjectCell Survival
dc.subjectDermis
dc.subjectElectrocardiography
dc.subjectElectrodes
dc.subjectElectronics
dc.subjectFemale
dc.subjectFibroblasts
dc.subjectForeign-Body Reaction
dc.subjectGoats
dc.subjectHydrogels
dc.subjectMale
dc.subjectNanotubes, Carbon
dc.subjectNaphthalenes
dc.subjectPericardium
dc.subjectPliability
dc.subjectPolyethylenes
dc.subjectRabbits
dc.subjectRats
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/ncomms11425
dc.description.sourcetitleNature Communications
dc.description.volume7
dc.description.page11425
dc.published.statepublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms11425.pdf1.81 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons