Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.5058717
DC FieldValue
dc.titleIn0.49Ga0.51P/GaAs heterojunction bipolar transistors (HBTs) on 200 mm Si substrates: Effects of base thickness, base and sub-collector doping concentrations
dc.contributor.authorWang, Y
dc.contributor.authorLee, K.H
dc.contributor.authorLoke, W.K
dc.contributor.authorBen Chiah, S
dc.contributor.authorZhou, X
dc.contributor.authorYoon, S.F
dc.contributor.authorTan, C.S
dc.contributor.authorFitzgerald, E
dc.date.accessioned2020-10-30T02:05:27Z
dc.date.available2020-10-30T02:05:27Z
dc.date.issued2018
dc.identifier.citationWang, Y, Lee, K.H, Loke, W.K, Ben Chiah, S, Zhou, X, Yoon, S.F, Tan, C.S, Fitzgerald, E (2018). In0.49Ga0.51P/GaAs heterojunction bipolar transistors (HBTs) on 200 mm Si substrates: Effects of base thickness, base and sub-collector doping concentrations. AIP Advances 8 (11) : 115132. ScholarBank@NUS Repository. https://doi.org/10.1063/1.5058717
dc.identifier.issn21583226
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/182070
dc.description.abstractWe report performance of InGaP/GaAs heterojunction bipolar transistors (HBTs) fabricated on epitaxial films directly grown onto 200 mm silicon (Si) substrates using a thin 100% germanium (Ge) buffer layer. Both buffer layer and device layers were grown epitaxially using metalorganic chemical vapor deposition (MOCVD). With the assistance of numerical simulation, we were able to achieve high performance GaAs HBTs with DC current gain of ?100 through optimizing the base doping concentration (C-doped, ? 1.9×1019/cm3), base layer thickness (?55 nm), and the sub-collector doping concentration (Te-doped, > 5×1018/cm3). The breakdown voltage at base (BVceo) of higher than 9.43 V was realized with variation of < 3% across the 200 mm wafer. These results could enable applications such as power amplifiers for mobile phone handsets and monolithic integration of HBTs with standard Si-CMOS transistors on a common Si platform. © 2018 Author(s).
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectBuffer layers
dc.subjectGallium arsenide
dc.subjectHeterojunctions
dc.subjectIII-V semiconductors
dc.subjectMetallorganic chemical vapor deposition
dc.subjectPower amplifiers
dc.subjectSemiconductor doping
dc.subjectSilicon wafers
dc.subjectSubstrates
dc.subjectTelephone sets
dc.subjectCollector doping
dc.subjectDC current gain
dc.subjectDoping concentration
dc.subjectGermaniums (Ge)
dc.subjectHeterojunction bipolar transistor (HBTs)
dc.subjectMobile phone handsets
dc.subjectMonolithic integration
dc.subjectSilicon substrates
dc.subjectHeterojunction bipolar transistors
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1063/1.5058717
dc.description.sourcetitleAIP Advances
dc.description.volume8
dc.description.issue11
dc.description.page115132
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1063_1_5058717.pdf2.1 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons