Please use this identifier to cite or link to this item:
https://doi.org/10.1186/1471-2105-12-S1-S21
Title: | Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG | Authors: | Mitra, S Rupek, P Richter, D.C Urich, T Gilbert, J.A Meyer, F Wilke, A Huson, D.H |
Keywords: | Comparative analysis Computational analysis Environmental sample Gene expression patterns Interactive analysis Microbial communities Next-generation sequencing Technological advances Computational methods Gene expression Microorganisms Tools Websites Functional analysis Functional analysis Bioinformatics article biology comparative study computer program gene expression profiling metagenomics methodology Computational Biology Gene Expression Profiling Metagenomics Software |
Issue Date: | 2011 | Citation: | Mitra, S, Rupek, P, Richter, D.C, Urich, T, Gilbert, J.A, Meyer, F, Wilke, A, Huson, D.H (2011). Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics 12 (SUPPL. 1) : S21. ScholarBank@NUS Repository. https://doi.org/10.1186/1471-2105-12-S1-S21 | Rights: | Attribution 4.0 International | Abstract: | Background: Metagenomics is the study of microbial organisms using sequencing applied directly to environmental samples. Technological advances in next-generation sequencing methods are fueling a rapid increase in the number and scope of metagenome projects. While metagenomics provides information on the gene content, metatranscriptomics aims at understanding gene expression patterns in microbial communities. The initial computational analysis of a metagenome or metatranscriptome addresses three questions: (1) Who is out there? (2) What are they doing? and (3) How do different datasets compare? There is a need for new computational tools to answer these questions. In 2007, the program MEGAN (MEtaGenome ANalyzer) was released, as a standalone interactive tool for analyzing the taxonomic content of a single metagenome dataset. The program has subsequently been extended to support comparative analyses of multiple datasets.Results: The focus of this paper is to report on new features of MEGAN that allow the functional analysis of multiple metagenomes (and metatranscriptomes) based on the SEED hierarchy and KEGG pathways. We have compared our results with the MG-RAST service for different datasets.Conclusions: The MEGAN program now allows the interactive analysis and comparison of the taxonomical and functional content of multiple datasets. As a stand-alone tool, MEGAN provides an alternative to web portals for scientists that have concerns about uploading their unpublished data to a website. © 2011 Mitra et al; licensee BioMed Central Ltd. | Source Title: | BMC Bioinformatics | URI: | https://scholarbank.nus.edu.sg/handle/10635/181644 | ISSN: | 14712105 | DOI: | 10.1186/1471-2105-12-S1-S21 | Rights: | Attribution 4.0 International |
Appears in Collections: | Elements Staff Publications |
Show full item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1186_1471-2105-12-S1-S21.pdf | 2.47 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License