Please use this identifier to cite or link to this item: https://doi.org/10.1039/c4sc03295k
Title: Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor
Authors: Tominaka, S
Hamoudi, H
Suga, T
Bennett, T.D
Cairns, A.B
Cheetham, A.K 
Keywords: Activation energy
Amorphous semiconductors
Chemicals removal (water treatment)
Chlorine compounds
Crystalline materials
Distribution functions
Electron spin resonance spectroscopy
Energy gap
Infrared spectroscopy
Java programming language
Magnetic moments
Metal analysis
Organometallics
Single crystals
Spectroscopy
Spectrum analysis
Thermogravimetric analysis
Ac impedance spectroscopy
Aqueous ammonia solution
Diffuse reflectance spectroscopy
Electrical conductivity
Metal organic framework
Pair distribution function analysis
Structure and properties
Theoretical calculations
X ray photoelectron spectroscopy
Issue Date: 2015
Publisher: Royal Society of Chemistry
Citation: Tominaka, S, Hamoudi, H, Suga, T, Bennett, T.D, Cairns, A.B, Cheetham, A.K (2015). Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor. Chemical Science 6 (2) : 1465-1473. ScholarBank@NUS Repository. https://doi.org/10.1039/c4sc03295k
Rights: Attribution 4.0 International
Abstract: The topochemical conversion of a dense, insulating metal-organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(i) chloride trithiocyanurate, CuICl(ttcH3) (ttcH3 = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous CuI1.8(ttc)0.6(ttcH3)0.4, 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 × 10-11 S cm-1 at 20 °C to 7.6 × 10-9 S cm-1 at 140°C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations. © The Royal Society of Chemistry 2015.
Source Title: Chemical Science
URI: https://scholarbank.nus.edu.sg/handle/10635/180478
ISSN: 2041-6520
DOI: 10.1039/c4sc03295k
Rights: Attribution 4.0 International
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1039_c4sc03295k.pdf1.05 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

49
checked on Sep 22, 2022

Page view(s)

137
checked on Sep 22, 2022

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons